1. 首页 > 教育教案

椭圆的第二定义 内容是什么 椭圆第二定义证明

本文为大家介绍了椭圆的第二定义 内容是什么,还有的小伙伴在问椭圆第二定义证明,下面小编给大家细致的讲述一下。

平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数)。

椭圆的相关定义

椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

第一定义:平面内与两定点F1、F2的距离的和等于常数2a(2a≥|F1F2|)的动点P的轨迹叫做椭圆。即:其中两定点F1、F2叫做椭圆的焦点,两焦点的距离|F1F2|=2c≤2a叫做椭圆的焦距。P为椭圆的动点。

第二定义:椭圆平面内到定点F(c,0)的距离和到定直线l:x=a²/c(F不在l上)的距离之比为常数从C/A,(即离心率,0<e<1)的点的轨迹是椭圆。

第三定义:平面内的动点到两定点A1(a,0)、A2(-a,0)的斜率乘积,等于常数 e²-1的点的轨迹,叫做椭圆或双曲线,其中两定点分别为椭圆或双曲线的顶点;当常数大于-1小于0时为椭圆;当常数大于0时为双曲线。

椭圆的面积公式

椭圆的第二定义 内容是什么 椭圆第二定义证明

椭圆第二定义证明

第二定义是平面上到定点距离与到定直线间距离之比为常数的点的集合.设到点的距离为d椭圆上任意一点为P(x,y) 则有对左焦点d/(a^2/c+x )=e d= a+ex 对右焦点 d/(a^2/c-x )=e d=a-ex 扩展资料:椭圆的面积是πab.椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ 标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1.椭圆切线的斜率是:-b²x0/a²y0,这个可以通过复杂的代数计算得到.参考资料来源:百度百科-椭圆

第二定义 平面上到定点f的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点f不在定直线上,该常数为小于1的正数) 其中定点f为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c<焦点在x轴上>或者y=±a^2/c<焦点在y轴上>). 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况

椭圆、双曲线第二定义,就是抛物线的定义.这实际上是圆锥曲线的统一定义.定义:到定点的距离与到定直线的距离比是常数(e)的点的轨迹是圆锥曲线.e∈(0,1)时是椭圆;e=1时,是抛物线;e∈(1,+∞)时是双曲线.定直线是相应的准线.

当点M与一个定点的距离和它到一条定 直线的距离的比是常数e =c/a(0<e<1)时, 这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率.